Электрические и принципиальные схемы микроволновки

Электрические схемы микроволновых печей

Микроволновые печи с электромеханическим управлением обычно имеют стандартную электрическую схему. Отличия между различными моделями незначительны и не носят принципиального характера.

Силовая часть печей с электронными блоками управления практически не отличается от печей с электромеханическим управлением. На принципиальной схеме эти отличия проявляются лишь в том, что вместо контактов таймера присутствуют контакты реле. Иногда вместо репе ставится симистор, однако режим его работы фактически тот же, что и у таймера.

Такая взаимозаменяемость блоков управления позволяет, в частности, вдыхать новую жизнь в печи с напрочь сгоревшей электроникой путем замены электронного блока управления на электромеханический или на электронный, но от другой модели. Ограничения на подобную замену связаны, в основном, с габаритными размерами, особенностями крепежа и конструкцией механизма открытия дверцы.

В качестве примера рассмотрим схему микроволновой печи «Samsung RE290D», изображенной на рис. 1.

Рис. 1. Принципиальная электрическая схема микроволновой печи «Samsung RE290D»

Чтобы включить СВЧ нагрев, требуется подать напряжение 220 В на первичную обмотку высоковольтного трансформатора. Это будет происходить, если контакты микропереключателя «Monitor switch» (MS) разомкнуты, а контакты всех остальных элементов цепи замкнуты. Рассмотрим условия, при которых устанавливается требуемое состояние контактов.

Термореле «cavity TCO» и «magnetron TCO» замкнуты, если температура камеры и магнетрона не превышает допустимой температуры.

Микропереключатели «primary switch» (PS) и «secondary switch» (SS) осуществляют блокировку включения магнетрона при открытой дверце и замыкаются при ее закрытии. На рисунке состояние микропереключателей соответствует открытой дверце.

Включение микроволновой печи происходит при установке ручки таймера на заданное время. При этом замыкаются контакты «timer switch» (TS), находящиеся внутри таймера. На обмотку страхующего реле «safety relay» начинает поступать напряжение, и его контакты замыкаются. В результате включаются электродвигатели таймера и вентилятора, а на трансформатор через сопротивление «resistor» подается напряжение.

Микропереключатель «monitor switch» контролирует исправную работу элементов блокировки дверцы. Если по какой-либо причине микропереключатели PS и SS перестанут размыкаться, то попытка включить печь с открытой дверцей приведет к перегоранию предохранителя «monitor fuse».

Вследствие этого включение реле SR станет невозможным, и генерации СВЧ мощности не произойдет. Следует обратить внимание, что для согласованной работы микропереключатель PS должен замыкаться позже, а размыкаться раньше, чем, соответственно, разомкнутся и замкнутся контакты MS. Нарушение этого синхронизма приведет к тому, что контакты PS замкнутся до того, как разомкнется MS, или наоборот, контакты MS замкнутся раньше, чем разомкнется PS. В обоих случаях это приведет к кратковременному короткому замыканию по входу с последующим перегоранием предохранителя. К сожалению, подобный асинхронизм в работе микропереключателей явление нередкое, поэтому, если в микроволновой печи без всяких видимых причин при закрытии или открывании дверцы горят предохранители, проблема, скорее всего, именно в несогласованной работе микропереключателей.

Резистор R1 служит для снижения пускового тока и работает лишь несколько миллисекунде процессе каждого включения, до тех пор пока не сработает реле «inrush relay», напряжение на которое подается одновременно с началом прохождения тока через резистор.

Необходимость сопротивления вызвана тем, что в начальный момент, высоковольтный конденсатор разряжен и в положительный полупериод, когда на диод подано прямое смещение, вторичная обмотка трансформатора оказывается замкнута «накоротко». В результате, при включении печи, происходит резкий бросок тока и она вздрагивает как от испуга, передавая свое душевное состояние окружающим. Сопротивление позволяет ограничить пусковой ток на некоторое время, в течение которого конденсатор постепенно заряжается до номинального значения и печь плавно входит в рабочий режим.

В настоящее время большинство развитых стран имеют стандарты, ограничивающие величину пускового тока, поэтому рассматриваемые элементы становятся обязательным атрибутом микроволновых печей с электромеханическим управлением.

Микропереключатель « VPS switch», установленный на таймере, служит для регулировки мощности. При задании уровня мощности меньше максимального он осуществляет периодическое отключение печи в соответствии с рисунком

Фильтр «noise filter» служит для снижения радиопомех, проникающих по цепям питания во
внешнюю сеть. Схема содержит также лампу накаливания «lamp» и двигатели таймера «timer motor» и вентилятора «fan motor», назначение которых не требует комментариев.

В зависимости от модели микроволновой печи, она может не иметь каких-либо рассмотренных компонентов или, наоборот, иметь дополнительные (например, при использовании комбинированных способов нагрева), однако это не вносит существенных изменений в работу электрической схемы.

В отличие от силовой части микроволновых печей, схемы электронных блоков управления имеют гораздо большее разнообразие. Особенно отличаются между собой печи, не имеющие специализированного микроконтроллера, построенные на основе дискретных элементов. Это характерно для первых моделей, которые в настоящий момент не выпускаются, но еще имеются в обиходе. В связи с этим не имеет смысла рассматривать какую-либо из схем в качестве примера.

Вместо этого рассмотрим работу некоторых наиболее часто встречающихся узлов и связанные с ними неисправности.

Схема начальной установки (рис. 2), предназначена для предварительного сброса в «0» ячеек памяти ОЗУ и установки всех имеющихся в схеме триггеров, счетчиков и т.п. в исходное состояние при подаче напряжения на блок управления.

Рис. 2. Схема начальной установки

В момент включения микроволновой печи в сеть конденсатор С разряжен, поэтому напряжение на нем равно «0» и на вход «reset» контроллера поступает сигнал сброса. Через короткий промежуток времени конденсатор зарядится через сопротивление R до напряжения питания, сигнал сброса на входе исчезнет и схема будет готова к дальнейшей работе.

Иногда сигнал сброса формируется не только при включении питания, но и при его снятии. Схема устройства, выполняющего данную функцию, показана на рис. 3.

Рис. 3. Схема начальной установки и контроля питания

Данная схема производит общий сброс и в том случае, если по какой-либо причине напряжение питания на микроконтроллере превысит допустимое.

Генератор тактовых импульсов, как правило, находится внутри микроконтроллера, за исключением источника опорной частоты, в качестве которого обычно используется кварцевый резонатор. Схема его подключения и сигналы на входе (BQ1) и выходе (BQ2) каскада усиления показаны на рис. 4.

Рис. 4. Схема подключения кварцевого резонатора

Формирователь сетевых синхроимпульсов предназначен для привязки времени включения и выключения силового источника питания к моменту прохождения амплитуды сетевого напряжения через ноль. Это позволяет предотвратить нежелательные выбросы тока в момент коммутации. Схема формирователя представлена на рис. 5.

Рис. 5. Схема формирователя импульсов

Он представляет собой транзисторный усилитель ключевого типа. В отрицательный полупериод транзистор закрыт и напряжение на выходе равно нулю. В положительный полупериод транзистор быстро входит в насыщение и амплитуда сигнала на выходе становится равной напряжению питания транзистора. Изменение выходного напряжения на выходе усилителя воспринимается микроконтроллером как момент перехода сетевого напряжения через ноль.

Коммутация элементов силовой цепи, как правило, производится посредством реле, установленных на блоке управления. Схема включения реле показана на рис. 6.

Рис. 6. Схема управления включением реле

Особенностью многих схем аналогичного назначения является невозможность включения силовой цепи (реле RY1) без предварительного включения вентилятора (реле RY2) и при открытой дверце камеры. В рассматриваемом случае это достигается тем, что ток через транзистор Q3, который включает реле RY1, может протекать только при замкнутом микропереключателе «DOOR» и открытом транзисторе Q2, включающем вентилятор, лампу и двигатель столика.

Схема формирования импульсов звуковой частоты предназначена для генерации зуммером звукового сигнала. Во многих случаях эта функция выполняется микроконтроллером с помощью программных средств. Однако в некоторых печах микроконтроллер задает только время звучания сигнала, а генератор звуковой частоты выполнен на дискретных элементах. В качестве примера рассмотрим рис. 7.

Рис. 7. Схема генератора сигнала звуковой частоты

Схема состоит из мультивибратора на транзисторах Q1, Q2 и усилителя на транзисторе Q3.
При отсутствии управляющего сигнала все транзисторы закрыты. При поступлении сигнала управления (+5 В) база транзистора Q2 оказывается под высоким потенциалом и он отпирается. Происходит постепенный заряд конденсатора С1 через резистор R4. В какой-то момент напряжение на нем, а соответственно, и на базе транзистора Q1 превысит напряжение отпирания, транзистор Q1 откроется, в результате чего напряжение на базе транзистора Q2 упадет и он закроется.

Читать статью  ТОП-10: Рейтинг белые микроволновых печей 2021-2022 года

Конденсатор начнет разряжаться через сопротивления R1, R2, пока напряжение на нем не упадет до такого значения, при котором закроется транзистор Q1. После этого весь цикл будет повторяться до тех пор, пока не исчезнет управляющий сигнал. В те моменты, когда открыт транзистор Q1, будет открываться и транзистор Q3, в результате чего на вход зуммера будет поступать переменный сигнал звуковой частоты.

Схема контроля питания (рис. 8) производит общий сброс микроконтроллера, в том случае, если питающее напряжение на нем превышает допустимый уровень.

Рис. 8. Схема контроля питания

Напряжение стабилизации на стабилитроне чуть меньше напряжения питания, поэтому в обычном режиме падение напряжения на резисторе R1 и соответственно на базе транзистора составляет доли вольта. Транзистор закрыт, но находится на грани открытия. Прирост напряжения выше номинального полностью падает на резисторе R1, поэтому даже относительно небольшое увеличение напряжения питания, свидетельствующее о неполадках в схеме стабилизации, приводит к быстрому отпиранию транзистора и формированию сигнала сброса.

Подключение клавиатуры осуществляется в мультиплексном режиме (рис. 9).

Рис. 9 Схема подключения клавиатуры

На линии сканирования от микроконтроллера поочередно поступают короткие импульсы, синхронно смещенные относительно друг друга по времени.

При нажатии одной из кнопок последовательность импульсов, проходящих по подключенной к ней линии сканирования, поступает на соответствующую ей линию отклика и возвращается обратно в микроконтроллер, на один из его входов. Номер входа, по которому вернулись импульсы, и время их прибытия позволяют микроконтроллеру однозначно определить, какая из кнопок в данный момент нажата.

Поскольку подключение клавиатуры во многом аналогично рассмотренному ранее подключению знакосинтезирующих индикаторов, то в обоих случаях можно использовать одни и те же линии сканирования.

Диоды D1 — D4 служат для предотвращения замыкания выходов микроконтроллера при одновременном нажатии нескольких кнопок. Резисторы R1 — R4 фиксируют состояние логического «0», если ни одна из кнопок на данной линии отклика не нажата.

В рассматриваемом случае активным является низкий уровень напряжения, поэтому резисторы подключены к шине питания «-5 В».

Источники питания для цепей блока управления, как правило, имеют несколько выходных напряжений. Например, на рис. 10 показан источник питания, используемый во многих микроволновых печах компании «Samsung».

Рис. 10. Типовая схема питания блока управления микроволновой печи

В цепи накала люминесцентного индикатора используется переменное напряжение 2,5 В.

Анодное напряжение — -31 В создается схемой удвоения на диоде D2 и конденсаторе С2,-работа которой аналогична работе силового блока питания. Питание репе и зуммера осуществляется от стабилизированного напряжения -12 В, формируемого выпрямителем на диоде D1, управляющим транзистором Q, источником опорного напряжения на стабилитроне ZD и резисторе R1 и сглаживающими фильтрами на конденсаторах С1 и С3.

Дополнительный стабилизатор на интегральной микросхеме IC1 осуществляет питание микроконтроллера. На вход IC1 подается напряжение -12 В, с выхода снимается хорошо стабилизированное напряжение -5 В.

Параллельно первичной обмотке трансформатора иногда включается варистор, полупроводниковый прибор на основе окиси цинка. Назначение варистора состоит в том, чтобы предохранить блок питания от скачков напряжения (которые могут происходить при отключении мощной нагрузки, например магнетрона).

Вольт-амперная характеристика варистора напоминает аналогичную характеристику двунаправленного стабилитрона (рис. 11).

Рис. 11. Внешний вид, условное обозначение и вольт-амперная характеристика варистора

Скачок напряжения на входе трансформатора приводит к резкому снижению сопротивления варистора и, как следствие, к выравниванию напряжения. Поскольку при этом через варистор протекает большой ток, то длительное воздействие повышенного напряжения приводит к его перегоранию.

При выходе варистора из строя замену ему можно не искать, достаточно выпаять его останки из платы и зачистить обугленные места. С учетом того, что в России повышенное напряжение в сети явление нередкое, в микроволновые печи, поставляемые в нашу страну, варистор, как правило, не ставится.

В некоторых печах (например, «Moulinex») используются бестрансформаторные блоки питания (рис. 12).

Рис. 12. Схема бестрансформаторного блока питания

Вместо трансформатора в данной схеме используется делитель напряжения, основными элементами которого являются конденсаторы С1 и СЗ и резистор R2. Сетевое напряжение, выпрямленное диодом D1, делится на перечисленных элементах пропорционально их сопротивлениям.

Реактивное сопротивление конденсатора обратно пропорционально его емкости и может быть вычислено по формуле:

Если частота f измеряется в герцах, а емкость С в фарадах, то размерностью сопротивления Хс будут Омы. По сравнению с обычным резистивным делителем емкостной обладает тем преимуществом, что преобразует напряжение практически без потерь мощности.

Диод D1, помимо основной своей функции, связанной с выпрямлением напряжения, не позволяет разряжаться конденсатору С3, когда напряжение на нем превышает напряжение на входе. В итоге на конденсаторе С3 накапливается заряд, создающий постоянное напряжение величиной около 30 В.

В дальнейшем оно с помощью цепочки стабилитронов преобразуется в ряд стабилизированных напряжений, необходимых для работы блока управления. Резистор R1 служит для разрядки конденсатора С1 после отключения печи из сети. Характерной особенностью аналогичных блоков питания является то, что общая шина связана не с корпусом печи, а с одним из выводов сетевого напряжения.

Если в розетке, к которой подключена микроволновая печь, нулевой и фазовый провод перепутаны местами, то все элементы блока управления могут находиться под напряжением 220 В. Это никак не отражается на работе самого блока управления, но требует осторожности при проведении ремонтных работ.

Электрические и принципиальные схемы микроволновки

Микроволновые печи прочно вошли в наш повсидневный обиход. А знаете ли вы, какова схема микроволновки, как она устроена? Предлагаем вам изучить этот вопрос.

Виды управления СВЧ печами

Разновидности микроволновок

Все микроволновки делятся на два вида: с электромеханическим или, проще говоря, механическим управлением, и с электронным. Первые отличаются более простым устройством системы и, соответственно, более низкой ценой. У вторых более «дружественный» интерфейс и они удобнее в эксплуатации.

Механическое управление

Большинство микроволновок с механическим управлением почти аналогичны и принципиальных отличий не имеют.

СВЧ с механическим управлением

Перед вами электрическая/принципиальная схема микроволновки Samsung RE290D с электромеханическим управлением.

«Сердцем» любой микроволновки является магнетрон. Именно он генерирует колебания сверхвысокой частоты (СВЧ), которые и разогревают продукты, помещенные внутрь микроволновки или, как ее еще называют, СВЧ-печи.

Магнетрон — от английского magnet (магнит) — «пришел» в быт из… радиолокации. Именно там впервые стали применять эту генераторную радиолампу.

Чтобы магнетрон заработал, на него необходимо подать напряжение накала катода (у большинства магнетронов 3,15 Вольт) и высокое напряжение питания анода (от 2000 до 4000 Вольт).

  • Эти напряжения снимаются с вторичных обмоток трансформатора H. V. TRANSF;
  • Фильтр NOISE FILTER предотвращает попадание импульсных помех из СВЧ-печи в питающую сеть;
  • Мотор TIMER MOTOR отсчитывает время приготовления пищи. Электромотор FAN MOTOR с установленной на его оси крыльчаткой охлаждает магнетрон, который при работе сильно нагревается;
  • Также включаются не показанный на схеме двигатель, вращающий поворотный столик, и лампа LAMP, которая подсвечивает камеру печи.

Комбинированный нагрев

Отдельные модели СВЧ-печей дополнительно оснащены ТЭНами (трубчатыми электронагревателями) и имеют комбинированный нагрев — микроволновый плюс тепловой. Это помогает образованию поджаристой корочки у продуктов, которая при чисто микроволновом нагреве отсутствует.

СВЧ с комбинированным подогревом

Импульсная модуляция

Выходная мощность магнетрона и, соответственно, нагрев продуктов регулируется способом, который тоже заимствован из радиолокации. Магнетрон включается время от времени, чередуясь с паузами. Чем больше он «простаивает», тем меньше нагрев продуктов. В специальной литературе такой способ называется импульсной модуляцией (ИМ).

Схема работы импульсного модулятора

На приведенной схеме включение-выключение магнетрона производится с помощью переключателя VPC SWITCH, который механически связан с электродвигателем таймера.

Схема строения СВЧ по электрической части

Электронное управление

Исполнительная/силовая часть схемы микроволновки с электронным управлением ничем не отличается от показанной выше. Отличие только том, что микроволновка с электронным управлением не имеет механических контактов и ее работа управляется микропроцессором и интегральными схемами. Роль контактов выполняют электронные ключи — симисторы. Более того, при крайней необходимости возможна замена электромеханической системы управления на электронную систему и наоборот.

СВЧ с электронным управлением

На практике этого не делают из конструктивных соображений — требуется большой объем слесарных работ и есть отличия в размерах этих систем управления.

Унифицированность

Таким образом, можно сказать, что все микроволновки, как ведущих брендов — «Самсунг», Bosch, Gorenje, Daewoo, «Панасоник», «Эленберг», «Скарлетт», LG — так и производителей «второго эшелона» — Digital, Trony и так далее — имеют одинаковое устройство и достаточно большую взаимозаменяемость составных элементов. Для иллюстрации покажем фотографии микроволновок с разными видами управления.

СВЧ Горизонт с электронным управлением

Это печка с электронным управлением.

СВЧ BBK с механическим управлением

А это с механическим. Как видите, два основных типа печей легко отличить друг от друга даже визуально. Но при этом, согласно схемам, немного отличается их конструкция.

Читать статью  Рейтинг микроволновок до 5000 рублей

Как отремонтировать СВЧ-печь
своими руками

Микроволновая печь (СВЧ-печь) – это бытовой электроприбор, предназначенный для быстрого размораживания, подогрева или приготовления водосодержащей пищи с помощью высокочастотного электромагнитного излучения частотой 2,45 ГГц.

В быту микроволновки начали применяться в 1962 году благодаря освоению серийного производства японской фирмой Sharp.

Отличительной особенностью работы СВЧ-печи является разогрев пищи по всему объему на глубину до 2,5 сантиметров со средней скоростью 0,5°C в секунду.

Электрическая схема, устройство и принцип работы
микроволновой печи

С розетки бытовой электропроводки питающее напряжение через вилку и шнур подается непосредственно на плату фильтра. Традиционного выключателя в СВЧ-печке нет.

Внешний вид микроволновой печи

Фильтр служит для подавления высокочастотных радиопомех, излучающих схемой печки, и на нем установлен в колодке трубчатый предохранитель F1 на ток от 8 до 12 А. Предохранитель перегорает, если в схеме произойдет короткое замыкание.

Далее питающее напряжение подается на два концевых выключателя SWA и SWB, блокирующих подачу напряжения на магнетрон и другие элементы схемы для исключения возможности включения печки при открытой дверце. Эта мера безопасности принята для исключения облучения человека СВЧ-волной.

Концевой выключатель SWC предназначен для соединения питающих проводов накоротко, в случае, если контакты выключателей SWA и SWB замкнутся при открытой дверце. При этом перегорит предохранитель F1, и схема печки будет обесточена. Считаю, что эта мера излишняя, так как такой случай на практике невероятен и только снижает надежность работы печки.

Термопредохранитель FU срабатывает при нагреве магнетрона до температуры выше допустимой, обычно 80°С. Температура срабатывания термопредохранителя всегда указывается на его корпусе. В нормальном состоянии сопротивление между его выводами должно быть равно нулю, а при срабатывании – бесконечности.

Электрическая монтажная схема микроволновой печи

Если концевые выключатели замкнуты, то питающее напряжение подается на схему управления, которая при включении режима нагрева продуктов подает напряжение на вентилятор охлаждения магнетрона, двигатель вращения тарелки, лампу освещения камеры печки и силовой трансформатор питания магнетрона.

Трансформатор имеет две вторичные обмотки. Одна для разогрева нити накала магнетрона напряжением 3,15 В с током нагрузки до 10 А. Вторая обмотка высоковольтная, выдающая напряжение около 2000 В. С помощью высоковольтного конденсатора C и диода D происходит выпрямление и умножение напряжения до 4000 В, необходимое для работы магнетрона. Предохранитель F2 служит для защиты трансформатора при пробое диода, конденсатора или магнетрона.

Внешний вид инвертора современной микроволновой печи

В последнее время появились СВЧ-печи в которых вместо силового трансформатора, диода и конденсатора установлен электронный инвертор, позволяющий плавно управлять мощностью магнетрона, что уменьшает вес печки, равномерность нагрева продуктов, но дороже.

Как видите, электрическая схема СВЧ-печи совсем не сложная и, представляя принцип ее работы можно самостоятельно найти и устранить неисправность в домашних условиях, имея под руками только мультиметр.

Вид микроволновой печи со снятой крышкой

Если снять крышку СВЧ-печки, то откроется картина, показанная на фотографии. Все модели печек сконструированы одинаково, и блоки размещены на одинаковых местах корпуса. Старые модели печек отличаются только блоком управления. В современных микроволновках электромеханический таймер заменен микропроцессорным электронным блоком, а силовой трансформатор электронным (инвертором).

Поиск неисправности в СВЧ-печи

Если в СВЧ-печи имеется цифровой дисплей, на котором появился код ошибки в виде буквы Е с числом, то нужно в инструкции по эксплуатации печи найти, какую неисправность означает этот код. Возможно, выполнив указание инструкции, Вам не придется заниматься серьезным ремонтом.

Внимание! При ремонте СВЧ-печи, следует соблюдать осторожность. Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током. Не забывайте вынимать вилку из розетки и при проверке разряжать высоковольтный конденсатор!

Перед началом самостоятельного ремонта СВЧ-печи нужно вынуть вилку из розетки, вывернуть несколько саморезов, фиксирующих крышку и снять ее, сдвинув в сторону задней стенки печки.

Далее внимательно осматриваются все детали и узлы на наличие механических или тепловых повреждений в виде потемнений. Проверяется плотность посадки накидных клемм. Если визуальных дефектов не обнаружено, то по инструкции в таблице, производится поиск и устранение неисправности.

Таблица часто встречающихся неисправностей СВЧ-печек и способы их устранения
Внешнее проявление неисправностиВозможная причина неисправностиПоиск неисправностиСпособ ремонта
Печь не включаетсяНеплотно закрыта дверца камерыПроверить дверцуПлотно закрыть дверцу
Ручка таймера проворачивается на осиСнять и проверить ручку на наличие дефектовЗаменить ручку
Нет напряжения в розеткеПроверить наличие напряженияПодключить к розетке любой исправный электроприбор, например, настольную лампу
Неисправен сетевой шнурПроверить внешним осмотром вилку и шнур на наличие механических повреждений, проверить мультиметром целостность проводов шнураПри неисправности заменить шнур
Нарушен электрический контакт в месте подключения клемм шнура в сетевом фильтреПроверить надежность подключения шнура к фильтру и отсутствие почернений и окисловПри слабом контакте поджать накидную клемму плоскогубцами, при наличии окислов зачистить поверхности наждачной бумагой. В случае разрушения клемм заменить их или припаять провода непосредственно к контактным дорожкам печатной платы
Перегорел предохранитель F1 на плате сетевого фильтраПрозвонить мультиметром предохранитель. В случае его обрыва прозвонить при открытой (сопротивление должно быть равно нулю) и закрытой (сопротивление должно быт равно бесконечности) дверце контакты концевого выключателя SWCПри неисправности SWC заменить, при отсутствии возможности снять клеммы с него и заизолировать. Установить новый F1 на такой же ток или отремонтировать. Если новый предохранитель перегорит, то нужно искать короткое замыкание в других узлах схемы
Неисправен концевой выключатель SWA или SWBПрозвонить мультиметром выключатели. При открытой дверце сопротивление должно быть равно бесконечности, а при закрытой – нулю)При неисправности выключателя его заменить, при отсутствии возможности, если вышел из строя только один из двух, снять с него клеммы и их соединить между собой
Механическое повреждение подвижной планки с крюками на дверцеПроизвести внешний осмотр планки на наличие поврежденийВ зависимости от повреждения заменить или отремонтировать
Неисправен механический таймер или блок управленияВ механическом таймере нужно прозвонить контакты и проверить работу двигателя. Электронный блок самостоятельному ремонту не подлежитЗачистить контакты или заменить неисправный узел
Дисплей светится, при нажатии на кнопки ничего не происходитНеисправен блок управления или загрязнены контактные площадки кнопок в сенсорной панелиСнять блок управления и промыть спиртом контакты кнопокЕсли не помогло, заменить блок управления
Дисплей светится, режимы задаются, при нажатии Пуск ничего не происходитНе работает кнопка Пуск в блоке управленияПромыть спиртом контакты сенсорной панели и кнопкиВ случае неисправности заменить блок управления
Неисправно реле включения в блоке управленияПрозвонить обмотку реле и проверить контактыВ случае неисправности заменить реле
При нажатии на кнопку Пуск пища не разогревается, но вращается вентилятор, тарелка, включается освещение камерыПерегорел высоковольтный предохранитель, неисправен силовой трансформатор, высоковольтный конденсатор, диод или магнетронПроверить мультиметром предохранитель, силовой трансформатор, высоковольтный конденсатор, диод и магнетронЗаменить неисправную деталь
В современных печках перегорел инвертор или магнетронЗаменой определить неисправный узелЗаменить инвертор или магнетрон
Микроволновка плохо греетНе работает вентилятор FM, магнетрон перегревается и срабатывает защитное терморелеПроверить рукой легкость вращения крыльчатки вентилятора и мультиметром целостность его обмоткиСмазать машинным маслом вал вентилятора, в случае обрыва обмотки вентилятор заменить
Низкое напряжение в сети или потеря эмиссии магнетрономИзмерять напряжение в сетиЕсли напряжение в норме, заменить магнетрон
Печь не выключается после отработки таймераНеисправен таймерПроверить шестеренчатый механизм таймераЗаменить таймер
Не вращается тарелка для пищиИзносилась пластмассовая муфтаСнять тарелку и осмотреть муфту на наличие разрушенияВ случае обнаружения дефектов муфту заменить
Неисправен двигатель вращения тарелки или нарушена цепь его питанияПроверить рукой свободу вращения вала и прозвонить обмоткуПри тугом вращении смазать подшипник вала, в случае обрыва обмотки двигатель заменить
Под тарелкой скопилась грязьСнять тарелку и осмотретьУдалить грязь
При разогреве пищи из камеры раздается треск и наблюдаются световые разрядыПрогорела слюдяная пластина, изолирующая волновод магнетронаОсмотреть слюдяную пластину на наличие дефектов (потемневшее место, отверстие). Пластина находится с правой стороны камеры печкиВ случае обнаружения дефектов пластину заменить. Пластина из слюды служит для защиты электроники от попадания паров пищи. Если нет для замены, то временно можно разогревать пищу и без нее
Камера перестала освещатьсяПерегорела лампочкаПроверить лампочку и надежность фиксации накидных клемм на выводы патронаЗаменить лампочку или поджать клеммы плоскогубцами

Проверка контактов проводов и других деталей является стандартной и не вызывает трудностей. Проверка магнетрона, высоковольтного конденсатора и диода имеет некоторые особенности.

Читать статью  15 лучших кухонных комбайнов

Проверка высоковольтного диода (столба)

Конструкция высоковольтного столба представляет собой несколько низковольтных диодов соединенных последовательно, поэтому прозвонить их мультиметром не всегда получается. Падение напряжения на одном простом диоде составляет около 0,8 В, а при соединении последовательно нескольких, падение напряжения составляет сумму падений на каждом в цепочке и напряжения мультиметра не хватает.

Проверка высоковольтного диода СВЧ

Поэтому для надежной проверки высоковольтного столбика нужно последовательно с ним включить лампу накаливания любой мощности, как показано на схеме. С помощью шнура с вилкой на цепочку подать от розетки сетевое напряжение 220 В. Полярность подключения диода значения не имеет.

Если лампа мерцая, будет светить в полнакала — то диод исправен. Если в полный накал, или не будет светить — то диод пробит или в обрыве и, следовательно, неисправен.

Проверка высоковольтного конденсатора

Для проверки необходимо отключить конденсатор от схемы СВЧ-печки и прозвонить их мультиметром. Перед проверкой обязательно разрядить, чтобы не повредить прибор, замкнув его выводы отрезком провода с зачищенными концами.

Часто внутри конденсатора устанавливают высокоомный резистор номиналом 1-10 МОм для разряда конденсатора. Поэтому сопротивление при проверке должно быть более 1 МОм. Если меньше или равно нулю, то конденсатор неисправен.

Проверка высоковольтного конденсатора СВЧ

Проверить конденсатор можно без прибора и более надежным способом, описанным выше для высоковольтного диода. Вместо диода включается конденсатор. Мощность лампочки накаливания выбирается 60-150 Вт.

При исправном конденсаторе, в зависимости от мощности лампы яркость ее свечения будет ниже обычной. Чем мощнее лампа, тем ниже будет яркость ее свечения. Конденсатор в данной схеме работает как ограничитель тока. Если яркость лампы не уменьшится или лампа не загорится, значит, конденсатор пробит или в обрыве.

Проверка магнетрона и термопредохранителя

Проверить магнетрон не сложнее чем диод или конденсатор. Сначала мультиметром измеряется сопротивление нити накала, величина которого должна составлять 3-10 Ом.

Затем измеряется сопротивление между анодом и катодом магнетрона. Для этого достаточно прикоснуться щупами омметра между любым выводом накала (катодом) и корпусом магнетрона (анодом). Сопротивление должно быть бесконечным.

Устройство и проверка магнетрона СВЧ

Если сопротивление нити накала равно бесконечности, или между анодом и катодом нулю, то магнетрон неисправен и подлежит замене.

Сопротивление термопредохранителя должно быть равно нулю, если больше, то он неисправен и тоже подлежит замене, так как ремонту не подлежит.

Если нет омметра, то магнетрон можно проверить, как и диод, с помощью лампочки. При включении вместо диода нити накала магнетрона, лампочка должна светиться в полный накал, анода и катода – не светиться. Термопредохранителя – светиться.

Пример ремонта СВЧ-печки

Перед тем, как выбросить на свалку СВЧ-печь SHARP R-2371K, обратились ко мне знакомые с вопросом, возможно ли ее отремонтировать? В сервисе ремонтировать отказались из-за отсутствия запчастей, так как печь давно снята с производства.

Поломанная СВЧ-печь SHARP

В печке, при очередном открытии двери отломалась ручка и треснула рамка дверцы, в дополнение отломались крепежные элементы пластины с крюками. Ручка и пружина пластины были утеряны, так как печка пролежала в кладовке много лет.

Треснутая рамка дверцы СВЧ-печи SHARP

Проблема заключалась не только в ремонте дверцы, надо было еще обеспечить ее надежную фиксацию в закрытом положении и блокировку электрической схемы при открывании. Восстановить печку в первоначальном виде не представлялось возможным. Через несколько дней раздумий было найдено простое конструкторское решение восстановительного ремонта СВЧ-печки.

Перед началом ремонта двери была проверена исправность ее электрической части. Дверка была закрыта, планка с крюками вставлена в прорези и удерживалась рукой. В камеру печки была помещена чашка с водой. После включения, через пару минут вода закипела.

Неодимовый магнит от винчестера

Фиксировать дверку печки в закрытом положении, было решено с помощью магнитной защелки. Для этого был взят неодимовый магнит, который показан на фотографии, извлеченный из компьютерного жесткого диска. Отличительной особенностью неодимовых магнитов является высокая магнитная индукция (сила притяжения).

Планка с концевыми выключателями СВЧ-печи

Для проверки идеи с концевых выключателей были сняты накидные клеммы и планка, на которой они были установлены, после отвинчивания двух саморезов, извлечена из печки. При открытой двери средний выключатель находится в замкнутом состоянии, а крайние – в разомкнутом.

Неодимовый магнит установлен в СВЧ-печь

Далее магнит был установлен в промежутке между прорезями для крюков. В дверке, для защиты от СВЧ-излучения, установлена железная рамка. Поэтому при проверке дверка с достаточным усилием удерживалась установленным магнитом. Решение оказалось удачным. Не пришлось даже делать отверстие под магнит в корпусе печки.

Самодельная ручка из алюминия для СВЧ-печи

Для восстановления рамки двери и создания ручки был взять алюминиевый профиль прямоугольного сечения. В нем были по краям сделаны выборки для плотной посадки и два отверстия с резьбой М4.

Самодельная ручка установлена на СВЧ-печи

В дверце уже были отверстия для крепления отломанной ручки, поэтому самодельная ручка закрепилась без доработки дверцы и хорошо вписалась в дизайн. Осталось только решить вопрос с автоматическим выключением печки при открывании двери.

Планка с концевыми выключателями установленная в СВЧ-печи

В любой СВЧ-печи при открывании двери блокировка работы осуществляется с помощью трех концевых выключателей, которые физически связаны с крюками планки двери. При открытой дверце крайние выключатели разомкнуты, а средний – замкнут.

Работа концевых переключателей в СВЧ-печи в первый момент

Блокировка работы печи осуществляется в два этапа. При закрывании двери нижний крюк сначала нажимает на толкатель среднего выключателя.

Работа концевых переключателей в СВЧ-печи

Далее крюк, удерживая толкатель среднего выключателя в нажатом состоянии, опускается вниз и утапливает толкатель нижнего выключателя.

Далее крюк, удерживая толкатель среднего выключателя в нажатом состоянии, опускается вниз и утапливает толкатель нижнего выключателя. Таким образом, сначала срабатывает выключатель SWC (указан на схеме в начале статьи) размыкающий питающие провода, а затем замыкаются выключатели SWA и SWB, подающие питающее напряжение на магнетрон и другие узлы схемы.

Смоделировать ситуацию, при которой понадобится защита выключателя SWC мне не удалось, разве, что одновременно залипнут контакты концевиков SWA, SWB и реле включения печки в блоке управления. Но при современной надежности радиоэлектроники вероятность такого случая равна нулю. И даже если такое произойдет во время работы печки, то никто не станет открывать дверцу. Поэтому решено было при ремонте SWC не задействовать.

Для упрощения конструкции было принято решение задействовать только один из концевых выключателей SWA или SWB, так как чтобы обесточить замкнутую цепь достаточно разорвать один провод. Предложенное решение, в случае желания, позволяет задействовать и оба концевых выключателя.

Технически было удобно реализовать блокировку с помощью концевого выключателя, установленного в середине планки. Поэтому один из крайних был установлен на его место. Чтобы снять выключатель нужно утопить фиксатор, повернуть выключатель и снять с оси.

Работа рычага концевого включателя СВЧ-печи

Далее из полоски стали толщиной 0,5 мм была выгнута и установлена на ось в виде винта М2,5 деталь, показанная на фотографии. Форма получилась замысловатой в связи с подгонкой геометрии по месту. Между деталью и плоскостью планки, для лучшего скольжения, на винт была надета шайба.

Крепление рычага концевого включателя СВЧ-печи на планке

С обратной стороны, чтобы винт не отвинтился, он был зафиксирован двумя затянутыми между собой гайками, на которые была дополнительно нанесена краска.

Работа рычага концевого включателя СВЧ-печи

Толкатель концевого выключателя нажимался с большим усилием, поэтому дополнительной пружины не понадобилось. Многократное нажатие подтвердило стабильность работы конструкции. Планка была закреплена в СВЧ-печи, и осталось вместо крюков на двери установить толкатель.

Толкатель рычага концевого включателя СВЧ-печи

Толкатель был сделан из подобранной по длине и диаметру латунной стойки с резьбой на конце М3, ввинченной в самодельную ручку. Диаметр его выбирался исходя из ширины прорези в корпусе печки для крюков. Длину пришлось определять экспериментально.

Для этого было измерено расстояние от плоскости ручки до самодельной детали выключателя и добавлен один сантиметр. Далее толкатель был ввинчен в ручку и дверца закрыта до срабатывания концевого выключателя. Затем толкатель был укорочен на величину щели, получившейся между дверцей и корпусом печки.

Клеммы концевого включателя СВЧ-печи

Осталось разобраться с электрической схемой. Клеммы, идущие к нижнему концевому выключателю, были надеты на оставшийся выключатель. Для соединения клемм, идущие ранее на верхний выключатель, была из листа вырезана полоска латуни.

Клеммы концевого включателя СВЧ-печи соединены

Далее обе клеммы надеты на эту полоску и заизолированы. Клеммы, ранее подключенные к среднему выключателю, просто заизолированы изоляционной лентой.

СВЧ-печь отремонтирована

Испытания СВЧ-печи после самостоятельного ремонта и продолжительная эксплуатация показали безотказную работу. Уверен, что теперь печка до следующего ремонта прослужит не один год.

Источник https://www.elremont.ru/svch/bt_rem28.php

Источник https://cosmo-frost.ru/svch/elektricheskie-i-principialnye-sxemy-mikrovolnovki/

Источник https://ydoma.info/remont-svoimi-rukami/remont-elektropriborov/remont-svch-mikrovolnovki.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: